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1. INTRODUCTION

Pulmonary arterial hypertension (PAH) is associated with increased vascular resistance, sustained contraction, 
and enhanced proliferation of pulmonary arterial smooth muscle cells (PASMCs). The underlying idea of this 
project is that the currently limited treatments for PAH represent an unmet medical need for soldiers, veterans 
and those in the general population. We are testing the hypothesis that the discovery of “novel” (i.e., not 
previously recognized) G-protein-coupled receptors (GPCRs) and their functional activity in the PASMCs from 
subjects with PAH can reveal new insights into pathophysiology and new therapeutic targets for PAH. Our 
approach is to isolate PASMCs from PAH subjects and controls, to define the expression and function of their 
complement of GPCRs, with the goal of identifying GPCRs that have known physiologic agonists and are 
uniquely expressed and/or prominently up-regulated in PAH-PASMCs and to define their potential as novel 
therapeutic targets for PAH.  

2. KEYWORDS

Pulmonary arterial hypertension (PAH), pulmonary artery smooth muscle cells (PASMCs), G-protein-coupled 
receptors (GPCRs), cyclic AMP, hypoxia. 

3. ACCOMPLISHMENTS

• What were the major goals of the project?

The 3 Aims/goals of the project are to: 1) Define the expression of GPCRs that have known physiologic 
agonists in human, rat and mouse PASMCs. 2) Determine if the expression profile of such PASMC-GPCRs is 
altered in PAH and if GPCRs with altered expression contribute to the pathophysiology of PAH. 3) Determine 
the therapeutic potential of such PAH-PASMC-expressed GPCRs.  

• What was accomplished under these goals? (in this reporting period)

1) Major Activities:

Aim 1’s major task is to isolate control PASMCs from humans, rats and mice and identify GPCRs with known 
physiologic agonists expressed by the PASMCs, to independently confirm the mRNA expression and analyze 
protein expression and responses mediated by a subset of those GPCRs. We also propose to determine if the 
profile of PASMC-expressed GPCRs differs from that of coronary artery and aortic smooth muscle cells 
(SMCs). This major task has several subtasks, to which we have devoted efforts during this reporting period, 
including:  

a) Isolation and preparation of primary cultures of PASMCs from the lungs of subjects who do not have PAH;
b) Preparation of RNA and cDNA from PASMCs and use of Taqman GPCR arrays to identify and quantify
GPCR expression; c) Preparation of RNA/cDNA from commercially obtained coronary artery and aortic SMCs 
and use of Taqman GPCR arrays to identify/quantify GPCR expression; d) Isolation and culture of PASMCs 
from Sprague Dawley rats and C57/BL6 mice prior to preparing RNA/cDNA and use of GPCR arrays to assess 
GPCR expression in the PASMCs;  and e) Confirmation of mRNA expression by independent qPCR analyses 
of highly expressed GPCRs from pulmonary artery, coronary artery and aortic SMCs. 

The major task of Aim 2 is to isolate PASMCs from subjects with PAH and determine if those PASMCs have 
altered expression of GPCRs with known physiologic agonists and that may contribute to the pathophysiology 
of PAH. The primary subtask of this reporting period has been to isolate PASMCs and prepare PASMC 
cultures from PAH subjects, including human subjects and animal subjects. In addition, we established rat and 
mouse models of PAH (chronic hypoxia, including the Sugen model in mice) and isolated PASMCs for primary 
culture, RNA/cDNA isolation and GPCR array analysis. 



The major task of Aim 3 (to be undertaken later in the project) is to determine the therapeutic potential of 
preferentially expressed PAH-PASMC GPCRs that have physiologic agonists. Criteria we plan to use in 
choosing GPCRs to target include GPCRs with greatest increase in expression in PAH-PASMCs, similarity of 
GPCR changes with PAH in humans, rats and mice, GPCRs predicted to impact on pathophysiology and for 
which drugs (in particular, FDA-approved drugs) are available.   

2) Specific objectives:

a) Obtain approval of the proposed experiments that involve use of animal and human subjects from the UCSD
Institutional Animal Care and Use Committee (IACUC) and UCSD Institutional Review Board (IRB), 
respectively, followed by approval from reviews by DoD staff, including from the Human Research Protection 
Office (HRPO) Office of Research Protections (ORP) U.S. Army Medical Research and Materiel Command 
(USAMRMC);  

b) Establish a protocol to obtain lung samples for studying GPCR expression from human PAH and non-PAH
subjects; 

c) Initiate the collection of lung samples and then isolate and grow PASMCs;

d) Isolate RNA and prepare cDNA from PASMCs; identify and quantify GPCR expression using Taqman
GPCR arrays; 

e) Obtain and culture commercially available human coronary artery and aortic SMCs, isolate RNA and
prepare cDNA from those cells and assay GPCR expression using Taqman GPCR arrays; 

f) Isolate and grow PASMCs from rats and mice, prepare RNA/cDNA from those PASMCs and assay GPCR
expression using Taqman GPCR arrays; 

g) Establish rat (chronic hypoxia) and mouse (chronic hypoxia and Sugen) models of PAH, isolate PASMCs
from the animals for primary culture, prepare RNA/cDNA from those PASMCs and assay GPCR expression 
using Taqman GPCR arrays.  

h) Isolate PASMCs from human subjects with PAH and determine if those PASMCs have altered GPCR
expression, including of GPCRs that may contribute to the pathophysiology of PAH. 

3) Significant results:

During this reporting period, we have made progress on each of the Specific objectives above: 

a) We obtained approval from the UCSD IACUC and IRB for the proposed studies involving animal and human
subjects, respectively, and subsequent approval by HRPO ORP USAMRMC. However, HRPO ORP 
USAMRMC approval for the human subject studies did not occur until 5-29-15. Thus we were delayed in 
undertaking such studies. Even so, as shown below, we were able to make progress in obtaining samples and 
generating data related to other objectives.  

b) At the beginning of the funding of this grant, we participated in a meeting with UCSD colleagues, including
our co-investigator, Dr. Patricia Thistlethwaite, a cardiothoracic surgeon, and with pulmonologists and 
pathologists, who all sought to obtain lung samples from patients undergoing surgery. An action plan was 
developed, under the auspices of approved IRB protocols, for pathologists to obtain intra-operative samples 
and then provide tissue to “on call” laboratory personnel, who would immediately receive the samples for the 
preparation of cells (in our case, PASMCs) for tissue culture.  

c) The plan established (under b) has proved to be highly effective and been aided by the frequency with
which lung resection is undertaken at UCSD on patients with various pulmonary disorders, including PAH and 
in addition, by the cooperative interaction with physicians and staff in  pulmonary medicine, thoracic surgery, 



and pathology. We have thus far obtained samples and grown PASMCs from 3 PAH patients, 4 non-PAH 
subjects, and 1 patient with pulmonary vascular occlusive disease (PVOD).   

d) We isolated RNA and generated cDNA from each patient sample noted in c) and then used Taqman GPCR
arrays (Life Technologies) to identify and quantify expression of ~355 non-chemosensory (other than odorant, 
taste, visual) GPCRs and certain additional mRNAs, including ones (e.g., GAPDH, 18S rRNA) for 
normalization of GPCR expression results. The assay uses an ABI Prism 7900HT system (Applied 
Biosystems) with accompanying data analysis software. We find that Taqman GPCR Arrays are more sensitive 
and accurate for quantifying GPCR mRNA than are arrays (e.g., Affymetrix) that assess overall gene 
expression. Normalized data for GPCR expression allows the calculation of ΔCt (difference in cycle threshold) 
values relative to 18S rRNA (which we find is well-suited for such normalization) and ∆∆Ct values, so as to 
define differences in GPCR expression between PAH-PASMCs and PASMCs from control subjects. We cluster 
GPCR expression data based on receptor linkage to heterotrimeric G-proteins (Gs, Gi/o, Gq/11, G12/13) and rank 
GPCRs on the basis of expression level. In addition, we developed a way to “weight” the relative contribution of 
individual GPCRs to the overall pool of cellular GPCRs.   As shown in Table 1, PASMCs from non-PAH 
subjects express a mean of 123 GPCRs (range 112-144); 73 of the GPCRs are shared among the 4 samples. 
Table 2 shows the levels of expression (ΔCt values) of the 50 highest expressed GPCRs in these PASMCs. 
Table 3 shows the G-protein linkages of those 50 GPCRs; because certain GPCRs have multiple such 
linkages, the total number of GPCRs in Table 3 is more than 50.  The highest number of GPCRs link to Gq or 
have unknown linkages. Table 4 shows the known physiologic agonist and G-proteins linkages of the highest 
expressed GPCRs for control PASMCs for which that information is known.  



e) We obtained human coronary arterial (n=1) and aortic SMCs (n=2) from a commercial source, cultured
these cells, prepared RNA, generated cDNA and used the Taqman GPCR arrays to identify and quantify 
GPCRs expressed by the cells. As shown in Table 1, both the coronary arterial and aortic SMCs express a 
similar number of GPCRs as do the PASMCs.  Many of the most highly expressed GPCRs with known 
agonists were similar in PA, coronary arterial and aortic SMCs (Tables 4-6). 



f) We obtained lungs from 3 month old Sprague-Dawley rats (one healthy female and male) and one healthy
male mouse (C57/BL), isolated and cultured PASMCs, have prepared RNA/cDNA and are in the midst of 
assaying their GPCR expression using Taqman GPCR arrays.  

g) We subjected rats and mice to chronic hypoxia as a means to induce PAH. In some experiments, mice were
treated with Sugen (dose) as an additional means to induce PAH (as recommended by a DoD staff reviewer of 
our grant application). We obtained evidence that the protocols used to induce PAH produced this response 
(Figures 1 and 2). Following the chronic hypoxia studies with the rats, PASMCs and aortic smooth muscle 
cells were isolated. We cultured these cells, isolated RNA and generated cDNA from them and are currently 
assessing GPCR expression using Taqman GPCR arrays. 



h) As noted in c) above, we obtained lungs samples and have grown PASMCs from 3 (female) patients with
PAH, 1 (female) patient with PVOD in addition to the 4 non-PAH subjects.  The primary cultures of PASMCs 
have been used at low passage for studies of expression of GPCRs and other mRNAs. As shown in Table 1, 
the overall number of GPCRs was similar in the non-PAH-, PVOD- and PAH-PASMCs. Table 7 lists the 50 
highest expressed GPCRs in the diseased PASMCs. Of note, the most highly expressed GPCRs are generally 
similar to those in control PASMCs (Table 2) and the G-protein linkage patterns of the GPCRs is similar to that 
of control PASMCs (Table 8 and not shown). 



• What opportunities for training and professional development has the project provided?

Nothing to report 

• How were the results disseminated to communities of interest?

Nothing to report 

• What do you plan to do during the next report period to accomplish the goals?

We plan to undertake further efforts on each of the 3 Aims and to expand the number of subjects for studies in 
Aims 1 and 2. A key goal is to confirm and extend our initial results, for example, to determine if we can identify 
a “PAH-specific GPCR expression profile”. In addition, we will undertake studies to confirm the expression of 
GPCRs identified by the Taqman GPCR arrays. These studies will include independent qPCR analyses, 
assays of GPCR proteins (using antibodies and other proteomic techniques), and studies of functional 



activities (e.g., signaling events, DNA synthesis, effects on cell growth and cell death, caspase 3 activation, 
expression of cell cycle proteins [p21/p27], cell migration) that PASMC-GPCRs may regulate.  

4. IMPACT

• What was the impact on the development of the principal discipline(s) of the project?

Our findings thus far imply that there are many more G-protein-coupled receptors (GPCRs), which are 
recognition sites on the cell surface for hormones, proteins, neurotransmitters and other “messengers”  than 
were previously known. Potentially these GPCRs, which that are the focus of this project, may play important 
roles in healthy and diseased pulmonary blood vessels and may be new targets for treating high blood 
pressure in the circulation of the lung, i.e. pulmonary arterial hypertension (PAH), in particular GPCRs that are 
more highly expressed in PAH-PASMC. 

• What was the impact on other disciplines?

The notion that individual cell types express many more types of GPCRs than were previously known is 
potentially important for the regulation of cells and tissues in health and disease. The results have impact on 
cell biology, biochemistry, physiology, pharmacology and pathology, as well as clinical medicine, especially if 
the newly recognized GPCRs can further understanding of pathophysiology and be used to aid in diagnosis, 
assessing prognosis and/or serve as therapeutic targets in disease states. 

• What was the impact on technology transfer?

Nothing to report 

• What was the impact on society beyond science and technology?

Nothing to report 

5. CHANGES/PROBLEMS

Nothing to report 

6. PRODUCTS

• Publications, conference papers and presentations
Journal publications:

Insel PA, Wilderman A, Zambon AC, Snead AN, Murray F, Aroonsakool N, McDonald DS, Zhou S, McCann T, 
Zhang L, Sriram K, Chinn AM, Michkov AV, Lynch RM, Overland AC, Corriden R.  G Protein-Coupled Receptor 
(GPCR) Expression in Native Cells: "Novel" endoGPCRs as Physiologic Regulators and Therapeutic Targets. 
Molecular Pharmacology. 88: 2015; 181-187.  Published; Acknowledgement of federal support (yes)   
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ABSTRACT
G protein–coupled receptors (GPCRs), the largest family of signaling
receptors in the human genome, are also the largest class of targets
of approved drugs. Are the optimal GPCRs (in terms of efficacy and
safety) currently targeted therapeutically? Especially given the large
number (∼120) of orphan GPCRs (which lack known physiologic
agonists), it is likely that previously unrecognized GPCRs, especially
orphan receptors, regulate cell function and can be therapeutic
targets. Knowledge is limited regarding the diversity and identity of
GPCRs that are activated by endogenous ligands and that native

cells express. Here, we review approaches to define GPCR ex-
pression in tissues and cells and results from studies using these
approaches. We identify problems with the available data and
suggest future ways to identify and validate the physiologic and
therapeutic roles of previously unrecognized GPCRs.We propose
that a particularly useful approach to identify functionally important
GPCRs with therapeutic potential will be to focus on receptors that
show selective increases in expression in diseased cells from pa-
tients and experimental animals.

Introduction
G protein–coupled receptors (GPCRs, also termed 7-

transmembrane or heptahelical receptors) have been of major
interest for investigators in many disciplines, including molec-
ular pharmacology. Early studies on GPCRs assessed the action
in cells and plasmamembrane preparations of neurotransmitters,
hormones, and pharmacological agents in terms of their ability to
regulate the generation of second messengers (e.g., cAMP, Ca21)
and, in turn, cellular events via enzymes (e.g., protein kinases)
and ion channels. Results obtained by the Human Genome Proj-
ect and for the genomes of other eukaryotes have revealed that
GPCRs are the largest family of signaling receptors in humans
and other species (Fredriksson et al., 2003; Vassilatis et al., 2003;
Insel et al., 2012; Foster et al., 2014b). The receptors include those
that interact with endogenous ligands (endoGPCRs); GPCRs

regulated by exogenous factors, such as photons of light, odorants,
and tastants (chemosensory receptors); and GPCRs that lack
known physiologic ligands (termed orphan receptors). It is
estimated that among the approximately 800 GPCRs in humans,
∼380 are endoGPCRs, of which about one-third are orphan
receptors, even though there have been substantial efforts at
deorphanization (Fredriksson et al., 2003; Kroeze et al., 2003;
Ozawa et al., 2010; Amisten et al., 2013; Civelli et al., 2013).
In parallel with work that has involved the cloning, genomic

characterization, heterologous expression, and studies of GPCR
actions and regulation, other efforts have emphasized the utility
of GPCRs as therapeutic targets. Indeed, GPCRs are the largest
class (∼30%) of the targets of approved drugs (Overington et al.,
2006; Lundstrom, 2009; Rask-Andersen et al., 2014). Reasons for
the utility of GPCRs as therapeutic targets include the many
different types of chemical entities with which they interact,
the accessibility of GPCRs on the plasma membrane from the
extracellular milieu, their ability to initiate signaling pathways
that undergo amplification in target cells, and the selectivity in
their expression by different types of cells. This latter property
aids in facilitating tissue- and cell-selective actions of GPCR-
targeted drugs.

Work in the authors’ laboratory on this topic has been supported by research
and training grants from the National Institutes of Health [Grants CA189477,
CA121938, GM68524, HL091061, HL066941, HL007444, and GM-68524], the
Department of Defense [Grant W81XWH-14-1-0372], and with financial assistance
from Roche, Pfizer-CovX, Bristol Myers Squibb, the American Heart Association,
and an ASPET-Astellas Award in Translational Pharmacology.

dx.doi.org/10.1124/mol.115.098129.

ABBREVIATIONS: endoGPCR, GPCR activated by endogenous ligands; GPCR, G protein–coupled receptor; PCR, polymerase chain reaction.
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Despite the widespread use of GPCRs as therapeutic targets,
one can ask the following: Are the optimal GPCRs (in terms of
efficacy and safety) targeted by current therapeutic approaches?
This question derives in part from the current therapeutic
targeting of only a fraction of the endoGPCRs. Moreover, orphan
GPCRs have largely been ignored as therapeutic targets. It is
thus necessary to identify the repertoire of GPCRs—in partic-
ular, endoGPCRs—expressed by individual tissues and, more
importantly, native cells. Studies to assess this gap in knowledge
test the hypothesis that certain GPCRs are enriched in native
cells, regulate cellular (and tissue) function, and can be targeted
therapeutically. In this article, we review the approaches and data
that have begun to provide information to test this hypothesis. In
addition, we discuss problems and limitations of available data
and future directions that may help definitively answer the
question posed earlier.

Methods and Approaches to Assess GPCR
Expression

Analyses of functional responses, second messengers, or
other signaling events represent hypothesis-testing approaches
by asking if a particular receptor is biologically active and
provide indirect ways to assessGPCR expression by tissues and
cells. Radioligand binding assays facilitate the direct identifica-
tion and quantification of GPCRs. However, functional, signal-
ing, and radioligand binding assays are biased approaches: one
chooses a GPCR of interest and then uses agonists, antagonists,
and radioligands for the receptor being assessed. Thus, one
can only study receptors for which appropriate reagents are
available.
By contrast, hypothesis-generating approaches are not based

on prior knowledge of a GPCR being present, but instead rely
on unbiased analyses of the expression of receptor mRNA or
protein. Such approaches can define the GPCR expression
profile/repertoire and can quantify receptor expression. Table 1
lists several approaches used to assess GPCR expression.
Numerous studies have used DNAmicroarrays (“DNA chips”)

to define the transcriptomes of cells and tissues. Such micro-
arrays contain probes (specific DNA sequences) that hybridize
with the genes of humans, mice, or other species. Hybridization
of the probes to target genes is quantified by chemiluminescence,
fluorescence, or another method, facilitating quantitation of the
abundance of individual mRNAs/cDNAs. Commercially avail-
ablemicroarrays that assessmost or all genes in a transcriptome
are not optimized to detect GPCRs, but such arrays have been
used to characterize GPCR expression.
Proprietary and commercialGPCRmicroarrays, to be discussed

later, and real-time polymerase chain reaction (PCR) analyses
for individual GPCRs offer an alternative approach to identify
chemosensory and nonchemosensory GPCRs. For example,
Regard et al. (2008) used Taqman quantitative real-time PCR

to quantify the transcripts of 353 nonodorant GPCRs in 41
adult mouse tissues and predicted previously unanticipated
roles for less well studied receptors—an idea consistent with
our hypothesis that previously unrecognized GPCRs are enriched
in native cells, contribute to physiology, and are potential
therapeutic targets.
With improvement in the ability to perform sequencing and

a rapid decrease in its cost, new techniques such as high-
resolution RNA sequencing have begun to be used to identify
and quantify expression of GPCRs and other members of the
transcriptome. Such studies have recently included the pro-
filing of GPCRs expressed in single cells (Manteniotis et al.,
2013; Spaethling et al., 2014).
An alternative to assessing the expression of GPCR mRNA

is the use of unbiased proteomic approaches, such as mass
spectrometry. Although such technology has not, as yet, been
used to define and quantify overall GPCR expression in cells and
tissues, initial results suggest this may be a feasible approach
(Eisen et al., 2013; Feve et al., 2014).

Microarrays for the Detection of GPCRs
Commercialmicroarrays have been created that are optimized

to detect and quantify the mRNA of ∼350 nonchemosensory
GPCRs of mice, rats, and humans. We and others have found
these arrays to be quite useful to assess GPCR expression.
Figure 1 shows a comparison of the detection of GPCRs by
such a targeted array (a Taqman GeneSignature array; Life
Technologies, Carlsbad, CA) with results obtained using an
Affymetrix Mouse Genome 430A microarray (Affymetrix,
Santa Clara, CA) (which detects ∼14,000 mouse genes). We
found that highly expressed GPCRs on the latter microarray
show a positive correlation (and an R2 of 0.37) with the GPCR
array data. However, assessment of GPCRs expressed at lower
levels reveals that the Affymetrix array hasmany false-positive
and false-negative results (and R2 5 0.01). GPCR arrays thus

TABLE 1
Unbiased methods to assess expression of GPCRs

DNA microarrays that assess entire transcriptomes
Real-time PCR analysis with primers for each GPCR
Targeted DNA microarrays that assess expression of

nonchemosensory GPCRs
High-resolution RNA sequencing
Proteomic approaches

Fig. 1. Comparison of GPCR expression data obtained using a GPCR-
specific array and a generic cDNA array. The data were collected in
two experiments, with data obtained using cDNA prepared from murine
wild-type S49 lymphoma cells and that could be compared for GPCRs
present on an Affymetrix Mouse Genome 430A microarray and a Taqman
GeneSignature array. The 32 GPCRs highly expressed (.log26) on the
Affymetrix array show a positive correlation (R2 = 0.37) between the two
arrays. GPCRs expressed at lower levels (,log26) show numerous false-
positive and false-negative results in the detection of GPCRs by the
Affymetrix array compared with the GPCR array (R2 = 0.01). DCT, cycle
threshold relative to the mRNA used to normalize expression of each GPCR;
GCRMA, guanine cytosine robust multiarray analysis.

182 Insel et al.

 at A
SPE

T
 Journals on Septem

ber 25, 2015
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


seem to be more useful to detect and quantify GPCRs than
nontargeted arrays. Data from others support this conclusion
(Maurel et al., 2011).

What Do Available Data Reveal about GPCR
Expression in Tissues and Native Cells?

GPCR expression has thus far been determined in a number
of tissues (Table 2) and a smaller number of individual cell
types (Table 3). Our laboratory has assessed the expression of
nonchemosensory GPCRs by numerous individual cell types,
including lymphoid cells, dendritic cells, neutrophils, vascular
smooth muscle cells, several types of fibroblasts, adipocytes,
renal epithelial cells, trigeminal neurons, and several types of
cancer cells.
The notion that GPCRs and GPCR signaling pathways are

altered (and are potential therapeutic targets) in cancer in

addition to various endocrine tumors (for which GPCR-
targeted drugs are commonly used) has been largely ignored
by investigators in oncology. Even so, several recent reviews
have emphasized the importance of GPCRs and GPCR
signaling in cancer (Lappano and Maggiolini, 2011; Feigin,
2013; O’Hayre et al., 2013, 2014). O’Hayre and colleagues
(2013) noted that nearly 20% of human tumors have GPCR
mutations, 4% of tumors have activating mutations of the
Gas gene, and activating mutations of Gaq family members
occur in melanomas. GPCRsmay contribute to cancer not only
by effects on the growth, death, metabolism, and function of
malignant cells, but also by actions on cells of the tumor
microenvironment, including vascular cells, immune cells,
and cancer-associated fibroblasts. Although not widely ex-
plored, such actions may have functional importance for the
malignant phenotype (Hanahan and Weinberg, 2011) and
thus have therapeutic potential.

TABLE 2
GPCR expression in tissues

Tissue Species Methods and Results Reference

Various: neurons, pancreas,
liver, etc.

Human, Mouse Proprietary arrays; assessed known, orphan, and odorant receptors in
human tissues and blood cells

(Hakak et al., 2003)

Various: neurons, kidney,
liver, etc.

Human, Mouse RT-PCR; assessed 100 endoGPCRs (as no, low, moderate, or strong
expression) in 17 tissues and 9 brain regions

(Vassilatis et al.,
2003)

Lung, breast, prostate,
melanoma, and gastric
cancers; B cell lymphoma

Human In silico analysis of GPCR expression in human tumors (eight
microarray data sets of non–small-cell lung cancer, breast cancer,
prostate cancer, melanoma, gastric cancer, and diffuse B cell
lymphoma); found several GPCRs overexpressed in the cancers

(Li et al., 2005)

Various: eye,
cardiovascular,
pulmonary, etc.

Mouse Transcript analysis of 353 nonodorant GPCRs in 41 mouse tissues;
predicted functional roles for previously unrecognized GPCRs

(Regard et al., 2008)

Squamous cell carcinoma
and adenocarcinoma

Human Laser capture microdissection and GPCR-focused DNA microarrays;
assessed 929 GPCR transcripts in patient-derived squamous cell
lung carcinoma or adenocarcinoma; found 5l GPCRs overexpressed
plus many with decreased expression

(Gugger et al., 2008)

Cardiac chambers Mouse Real-time RT-PCR; evaluated nonchemosensory endoGPCRs in the
four cardiac chambers; focused on 128 GPCRs and chamber-specific
expression

(Moore-Morris et al.,
2009)

Adrenal gland Human cDNA chip with nucleotide sequences of 865 GPCRs to assess
adrenals and adrenal cortical tumors; tumors had higher expression
of several GPCRs

(Assie et al., 2010)

Melanoma metastases and
nevi

Human Quantitative PCR; assessed expression of 75 orphan and 19
chemokine GPCRs in melanoma metastases and benign nevi; found
several orphan GPCRs with higher expression in the metastases

(Qin et al., 2011)

Urothelial tissue Human RT-PCR array; evaluated 40 GPCRs in human urothelium and
urothelium-derived cell lines; cell lines had lower expression of
most GPCRs

(Ochodnicky et al.,
2012)

Pancreas, small intestine Human Taqman GPCR arrays; compared small bowel and pancreatic
neuroendocrine tumors (SMNET, PNET) and normal tissue; found
altered expression of 28 and 18 GPCRs in SMNET and PNET,
respectively

(Carr et al., 2012)

Pancreatic islets Human Data from the IUPHAR GPCR database; GeneCards.org, ingenuity.
com, PubMed.gov used to define a human GPCRome and then
qPCR primers for these 384 GPCRs; found 293 GPCRs expressed
predicted to be activated by 271 ligands and identified 107 drugs
predicted to stimulate and 184 drugs predicted to inhibit insulin
secretion

(Amisten et al.,
2013)

Cerebellum Human GPCR RT-PCR arrays; four normal pediatric cerebellums and 41
medulloblastomas; numerous GPCRs had increased expression and
clusters of tumors had particular patterns of GPCR expression

(Whittier et al.,
2013)

Eye Human, Mouse RNA sequencing of cDNA of eyes and retinas of mice and a human
donor eye; 165 GPCRs identified

(Chen et al., 2013)

Adipose tissue Human Quantitative PCR of 384 GPCRs; found 163 GPCRs in subcutaneous
adipose tissue, 119 drugs (acting on 23 GPCRs) that may stimulate
lipolysis, and 173 drugs (acting on 25 GPCRs) that may inhibit
lipolysis

(Amisten et al.,
2015)

Hypothalamus Mouse Taqman GPCR arrays; examined hypothalamic arcuate nucleus of
female mice; identified 292 GPCRs (including 109 orphan GPCRs)

(Ronnekleiv et al.,
2014)

IUPHAR, International Union of Basic and Clinical Pharmacology; qPCR, quantitative PCR; RT-PCR, reverse-transcription PCR.
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Several general conclusions regarding GPCR expression in
tissues and cells can be drawn from published findings and
our unpublished results:

1) Most tissues and individual cell types express at least
100 different GPCRs, including GPCRs that link to
each of the major classes of heterotrimeric G proteins
(Gs, Gi/o, Gq/11, and G12/13).

2) Among the GPCRs with the highest expression are those
not previously known to be expressed in the previously
mentioned tissues and cells and, thus, not the subject of
prior studies.

3) Many of the highest expressed GPCRs are orphan
receptors.

4) Cells from animals or patients with particular diseases
show prominent changes (increases and decreases) in
expression of numerous GPCRs, thus revealing disease-
specific changes in GPCR expression.

5) Additional methods [quantitative real-time PCR, antibody-
based and functional (including signal transduction and
cellular response) assays]) confirm data obtained with
GPCR arrays, including, for example, evidence that the
expression of several Gs-coupled GPCRs correlates
with their ability to maximally stimulate cellular cAMP
production.

Such findings thus indicate that analysis of GPCR ex-
pression of tissues, and especially of individual cell types,

appears to be a highly useful means to identify previously
unrecognized GPCRs that may be functional, contribute to
pathophysiology, and serve as novel drug targets.

What Are Some of the Problems and Limitations
of Efforts to Define GPCR Expression in Tissues

and Cells?
Despite the potential importance of the findings related to

the discovery of “new GPCRs,” i.e., endoGPCRs not previously
known to be expressed, in individual tissues and cell types,
a number of issues must be considered in studies of GPCR
expression:

1) The source of material analyzed for GPCR expression:
The results in Table 2 were primarily derived from
studies of whole organs, tissues, and tissue biopsies, all
of which are heterogeneous cellular preparations. The
contribution of the different cell types in such prepa-
rations is thus not clear. Studies of individual cell types
(Table 3) obviate this concern. Even in such studies,
however, one analyzes a population of cells. The use of
techniques such as high-resolution RNA sequencing
(Manteniotis et al., 2013; Spaethling et al., 2014) and
perhaps proteomic methods (Davies et al., 2007; Wu et al.,
2012; Eisen et al., 2013) to assess GPCRs in individual
cells will thus be an important future direction for

TABLE 3
GPCR expression in cells

Cell Species Methods and Results Reference

Bone marrow stromal cell
lines

Human GPCR RT-PCR array; showed relationship between number of GPCRs
detected versus amount of total RNA in samples; detected mRNA
for 199 GPCRs; highly expressed GPCRs detected with ∼1 ng total
RNA.

(Hansen et al., 2007)

Macrophages (bone marrow
and peritoneal)

Mouse DNA microarray data from NCBI (accession number GSE10246);
assessed expression in bone marrow- and peritoneal-derived
macrophages, microglia, and macrophage-like cells, RAW264; 67
GPCRs expressed constitutively or induced by lipopolysaccharide

(Lattin et al., 2008)

Embryonic stem cells
(ESCs)

Mouse GPCR RT-PCR arrays; examined ESCs cultured 4 or 20 days; ∼200
GPCRs had low, high, or moderate expression

(Layden et al., 2010)

BV2 Rat DNA high-density arrays and GPCR-specific qPCR; assessed 20,000
genes of HEK293, AtT20 (pituitary), BV2 (microglial), and N18
(neuroblastoma) cells; found 73, 79, 108, and 105 nonchemosensory
GPCRs, respectively, in those cells and related signaling proteins

(Atwood et al., 2011)
N18 Mouse
HEK293, AtT20 Human

Cerebral neurons Mouse Customized quantitative real-time RT-PCR; studied cerebellar
granule neurons (CGNs); identified 38 highly and 46 intermediately
expressed GPCRs; expression of some GPCRs changed during CGN
development

(Maurel et al., 2011)

Cardiac fibroblasts Rat GPCR RT-PCR arrays; assessed cardiac fibroblasts; identified 190
GPCRs; highest expressed, protease-activated receptor 1, was
shown to be profibrotic

(Snead and Insel, 2012)

Monocytes, macrophages Human GPCR arrays; assessed alveolar macrophages (AMs); phorbol ester–
treated THP-1, HL60, and U937 cells; peripheral blood monocytes
and monocyte-derived macrophages; 164 GPCRs identified; highest
expressed in AM was complement 5a receptor (C5R1)

(Groot-Kormelink et al.,
2012)

Lung fibroblasts Human GPCR RT-PCR array; defined GPCR expression differences in normal
lung fibroblasts and a gefitinib-resistant non–small-cell lung cancer
cell line, H1975

(Kuzumaki et al., 2012)

Monocytes, macrophages Human GPCR RT-PCR arrays; evaluated GPCR expression changes during
differentiation of monocytes to macrophages and by TLR4
activation, which altered expression of 101 GPCRs

(Hohenhaus et al., 2013)

Ghrelin cells Mouse GPCR arrays; found 90 GPCRs in gastric ghrelin cells; validated
functional activity of several GPCRs

(Engelstoft et al., 2013)

Glioblastoma cancer stem-
like cells, U-87 MG cells,
astrocytes, fetal neural
stem cells

Human GPCR RT-PCR array; assessed glioblastoma cancer stem-like cells,
glial tumor cells, a glioblastoma cell line (U-87 MG cells),
astrocytes, and fetal neural stem cells; eight GPCRs were specific to
glioblastoma cells; 17 GPCRs specific to cells with stem properties

(Feve et al., 2014)

HEK293, human embryonic kidney 293; NCBI, National Center for Biotechnology Information; qPCR, quantitative PCR; RT-PCR, reverse-transcription PCR.
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defining the profile and variability in GPCR expres-
sion in particular cell types.

2) Reproducibility and consistency of methods used to
prepare mRNA, cDNA, or protein and to assess gene
and protein expression: Standards have been developed
to facilitate reproducibility in microarray (Brazma et al.,
2001; Hansen et al., 2007; Rung and Brazma, 2013) and
proteomic studies (Davies et al., 2007; Taylor et al., 2007),
but results from different laboratories can differ. Such
differences are generally attributed to variations in the
methods used for the preparation and processing of
samples. Primer design may not be ideal for the detection
of all relevant GPCRs by arrays. For example, Taqman-
based GPCR arrays may not detect certain, including
functionally relevant, GPCRs. The use of different ap-
proaches for data analysis and statistics by different
laboratories can contribute to discordant results (Pan,
2002; Motulsky, 2014). The dearth of well validated
antibodies to detect native GPCRs, including for use in
proteomic studies, is an important problem in GPCR
research (Hutchings et al., 2010; Talmont et al., 2012;
Eisen et al., 2013; Marchalant et al., 2014). Use of
antibodies to study GPCRs is challenging because the
receptors are typically expressed in cells at lower levels
than many other cellular proteins. Criteria, including
studies with cells or animals engineered to have a
knockout of a particular GPCR, have been proposed to
help validate GPCR-targeted antibodies (Michel et al.,
2009). Moreover, since protein levels in cells are not
necessarily predicted by mRNA abundance, differences
in protein expression could derive from factors that
include altered protein translation and/or degradation
(de Sousa Abreu et al., 2009; Maier et al., 2009). Especially
given the difficulties in obtaining well validated GPCR
antibodies, a possible solution is to measure levels of
actively translated mRNA using polysome profile analy-
sis together with DNA high-density arrays or GPCR-
specific quantitative PCR (Ma�sek et al., 2011; Gandin
et al., 2014).

3) Normalization of results for GPCR expression: Most
assays used to determine mRNA and protein expression
rely on normalization to “housekeeping” genes/proteins.
An extensive literature has discussed problems related
to normalization in such studies. One such problem is
a change in expression of the gene/protein used for
normalization—a particular concern in studies of de-
velopment, differentiation, or disease (Khimani et al.,
2005; Brattelid et al., 2007). Two issues in the use of
arrays to assess GPCR expression are how to define the
limit of detection of a receptor in terms of Δcycle-threshold
[ΔC(t)] relative to the reference used for normalization, and
the most appropriate statistical tests for data analysis
(Khimani et al., 2005; Rubie et al., 2005).

4) Approaches used to classify GPCRs in profiles of their
expression in tissues and cells: One approach is to
cluster results for GPCR expression on the basis of the
coupling of receptors to heterotrimeric G proteins.
Such information is available in articles and databases,
such as the International Union of Basic and Clinical
Pharmacology/British Pharmacological Society Guide
to Pharmacology (Pawson et al., 2014). The Interna-
tional Union of Basic and Clinical Pharmacology/British

Pharmacological Society systematically annotates each
GPCR and provides reviews from expert subcommittees
for each of the target families in the database. Results
that supersede such data are published on an ongoing
basis; therefore, one must be vigilant in updating
conclusions regarding the coupling of GPCRs to G pro-
teins. Problems associated with classifying results on this
basis include the evidence that some GPCRs couple to
multiple G proteins, the limited data regarding the
G protein linkage of orphan GPCRs, and the ability of
GPCRs to act via b-arrestin instead of (or in addition to)
G proteins. Other ways to classify GPCRs include the
Glutamate, Rhodopsin, Adhesion, Frizzled/taste2, and
Secretin system, evolutionary relationships, ligand
interactions, structural data, and susceptibility to post-
translational modifications (Fredriksson et al., 2003;
Davies et al., 2007; Secker et al., 2010; Lin et al., 2013;
Venkatakrishnan et al., 2013).

5) Which types of GPCRs should be studied? As shown by
the studies in Tables 2 and 3, most efforts have focused
on the use of array- or PCR-based methods and have
emphasized the expression of nonchemosensory GPCRs.
Recent studies, however, have identified chemosensory
receptor expression in tissues not typically thought to be
in involved in sensation (Reimann et al., 2012; Foster
et al., 2014a,b; Pronin et al., 2014; Rajkumar et al.,
2014; Malki et al., 2015). With the discovery of small-
molecule metabolites [in some cases, products of micro-
biota (e.g., Natarajan and Pluznick, 2014)] that interact
with GPCRs and that may have been considered odor-
ants or tastants, the distinction between chemosensory
and nonchemosensory GPCRs is blurring. Thus, future
studies may need to incorporate analyses of both types of
GPCRs.

6) Prioritization of results regarding GPCR expression to
guide subsequent studies that validate the expression
and evaluate the functional role of individual recep-
tors: The discovery that native cells typically express
.100 GPCRs creates an embarrassment of riches, but
also a challenge in terms of choosing individual GPCRs
for subsequent studies. A key goal is to identify GPCRs
that are important for cellular function and that may
be therapeutic targets. The use of RNA interference
and gene editing approaches (i.e., CRISPR/Cas9) to
knock down receptor expression in cells of interest and
then to assess the impact of receptor knock down on
functional activity (signal transduction or cellular responses)
provides a way to survey a population of GPCRs and
identify physiologically (and potentially pharmacologically)
important GPCRs (Willets and Nash, 2013). Additional
features to help such prioritization include 1) the level of
expression (more highly expressed GPCRs are predicted to
contribute to a greater extent to cell function and may be
easier to study); 2) knowledge of other cell types that
express receptors of potential interest [to achieve greater
selectivity in the site of action, including by comparing
expression in cells that are related to one another, such as,
for example, in different types of macrophages (Lattin
et al., 2008; Groot-Kormelink et al., 2012; Hohenhaus
et al., 2013)]; 3) choosing GPCRs whose expression is
shared in a cell type found in humans and experimental
animals (e.g., mice, rats); and 4) availability of reagents
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(e.g., agonists, antagonists, antibodies) to conduct signaling
and functional studies. A useful feature, especially for
studies of disease settings, is to focus efforts on GPCRs
with prominent differences in expression between the
normal cells and cells from diseased animals or patients.
Differential GPCR expression can also be helpful in
choosing GPCRs for studies of development and differ-
entiation of tissues and cells.

7) Determining the function of highly expressed orphan
GPCRs: Some of the most exciting (and unexpected)
data that we have obtained from our studies of GPCR
expression in native cells is the high expression of a
variety of orphan GPCRs. This is perhaps not surpris-
ing since orphan receptors represent about one-third
of the endoGPCRs, and limited reagents have been
available to assess function mediated by most orphan
GPCRs. Since the endogenous ligands for such recep-
tors are unknown, investigating their physiologic roles
can be difficult (Ahmad et al., 2014). Molecular ap-
proaches, such as RNA interference or overexpression
in heterologous cells, can help define signaling mech-
anisms, especially if a GPCR is constitutively active.
Antibodies to orphan GPCRs might be used to block
signaling and obviate the need for a ligand, although,
as noted earlier, validation of GPCR antibodies can be
difficult. Another challenge with orphan GPCRs has
been the difficulty in setting up screens for ligands, as
the G protein coupling of an orphan may not be known;
chimeric G proteins may be a way to develop high-
throughput screens (Yin et al., 2004).

Summary and Conclusions
Even though they have been widely studied and highly useful

as therapeutic targets, GPCRs continue to be very important
molecular entities. The recognition from genomic studies that
there are many more GPCRs than were previously known or
characterized, and that many of these are orphan receptors
provides opportunities to discover physiologic and therapeutic
roles for newly recognized GPCRs. Studies of GPCR expression
in tissues, but especially in native cells, can reveal that pre-
viously unrecognized GPCRs contribute to cell function in health
and disease. Numerous challenges exist in studies of GPCR
expression, but if “new” GPCRs can be validated and shown to
be functionally active, we anticipate that such GPCRs may
prove to be as important—and perhaps evenmore so—than the
GPCRs that have been the focus of efforts in physiology and
pharmacology, and that are so valuable as therapeutic targets.
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